Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
China CDC Wkly ; 5(4): 76-81, 2023 Jan 27.
Article in English | MEDLINE | ID: covidwho-2246184

ABSTRACT

Introduction: High-resolution data is essential for understanding the complexity of the relationship between the spread of coronavirus disease 2019 (COVID-19), resident behavior, and interventions, which could be used to inform policy responses for future prevention and control. Methods: We obtained high-resolution human mobility data and epidemiological data at the community level. We propose a metapopulation Susceptible-Exposed-Presymptomatic-Infectious-Removal (SEPIR) compartment model to utilize the available data and explore the internal driving forces of COVID-19 transmission dynamics in the city of Wuhan. Additionally, we will assess the effectiveness of the interventions implemented in the smallest administrative units (subdistricts) during the lockdown. Results: In the Wuhan epidemic of March 2020, intra-subdistrict transmission caused 7.6 times more infections than inter-subdistrict transmission. After the city was closed, this ratio increased to 199 times. The main transmission path was dominated by population activity during peak evening hours. Discussion: Restricting the movement of people within cities is an essential measure for controlling the spread of COVID-19. However, it is difficult to contain intra-street transmission solely through city-wide mobility restriction policies. This can only be accomplished by quarantining communities or buildings with confirmed cases, and conducting mass nucleic acid testing and enforcing strict isolation protocols for close contacts.

2.
Intell Med ; 3(2): 85-96, 2023 May.
Article in English | MEDLINE | ID: covidwho-2179675

ABSTRACT

After the outbreak of COVID-19, the interaction of infectious disease systems and social systems has challenged traditional infectious disease modeling methods. Starting from the research purpose and data, researchers improved the structure and data of the compartment model or used agents and artificial intelligence based models to solve epidemiological problems. In terms of modeling methods, the researchers use compartment subdivision, dynamic parameters, agent-based model methods, and artificial intelligence related methods. In terms of factors studied, the researchers studied 6 categories: human mobility, nonpharmaceutical interventions (NPIs), ages, medical resources, human response, and vaccine. The researchers completed the study of factors through modeling methods to quantitatively analyze the impact of social systems and put forward their suggestions for the future transmission status of infectious diseases and prevention and control strategies. This review started with a research structure of research purpose, factor, data, model, and conclusion. Focusing on the post-COVID-19 infectious disease prediction simulation research, this study summarized various improvement methods and analyzes matching improvements for various specific research purposes.

3.
BMJ Open ; 11(9): e047227, 2021 09 07.
Article in English | MEDLINE | ID: covidwho-1398666

ABSTRACT

OBJECTIVE: To evaluate epidemiological characteristics and transmission dynamics of COVID-19 outbreak resurged in Beijing and to assess the effects of three non-pharmaceutical interventions. DESIGN: Descriptive and modelling study based on surveillance data of COVID-19 in Beijing. SETTING: Outbreak in Beijing. PARTICIPANTS: The database included 335 confirmed cases of COVID-19. METHODS: To conduct spatiotemporal analyses of the outbreak, we collected individual records on laboratory-confirmed cases of COVID-19 from 11 June 2020 to 5 July 2020 in Beijing, and visitor flow and products transportation data of Xinfadi Wholesale Market. We also built a modified susceptible-exposed-infected-removed model to investigate the effect of interventions deployed in Beijing. RESULTS: We found that the staff working in the market (52.2%) and the people around 10 km to this epicentre (72.5%) were most affected, and the population mobility entering-exiting Xinfadi Wholesale Market significantly contributed to the spread of COVID-19 (p=0.021), but goods flow of the market had little impact on the virus spread (p=0.184). The prompt identification of Xinfadi Wholesale Market as the infection source could have avoided a total of 25 708 (95% CI 13 657 to 40 625) cases if unnoticed transmission lasted for a month. Based on the model, we found that active screening on targeted population by nucleic acid testing alone had the most significant effect. CONCLUSIONS: The non-pharmaceutical interventions deployed in Beijing, including localised lockdown, close-contact tracing and community-based testing, were proved to be effective enough to contain the outbreak. Beijing has achieved an optimal balance between epidemic containment and economic protection.


Subject(s)
COVID-19 , Beijing/epidemiology , China/epidemiology , Communicable Disease Control , Disease Outbreaks , Humans , SARS-CoV-2
4.
Infect Dis Poverty ; 10(1): 62, 2021 May 07.
Article in English | MEDLINE | ID: covidwho-1220178

ABSTRACT

BACKGROUND: A local coronavirus disease 2019 (COVID-19) case confirmed on June 11, 2020 triggered an outbreak in Beijing, China after 56 consecutive days without a newly confirmed case. Non-pharmaceutical interventions (NPIs) were used to contain the source in Xinfadi (XFD) market. To rapidly control the outbreak, both traditional and newly introduced NPIs including large-scale management of high-risk populations and expanded severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PCR-based screening in the general population were conducted in Beijing. We aimed to assess the effectiveness of the response to the COVID-19 outbreak in Beijing's XFD market and inform future response efforts of resurgence across regions. METHODS: A modified susceptible-exposed-infectious-recovered (SEIR) model was developed and applied to evaluate a range of different scenarios from the public health perspective. Two outcomes were measured: magnitude of transmission (i.e., number of cases in the outbreak) and endpoint of transmission (i.e., date of containment). The outcomes of scenario evaluations were presented relative to the reality case (i.e., 368 cases in 34 days) with 95% Confidence Interval (CI). RESULTS: Our results indicated that a 3 to 14 day delay in the identification of XFD as the infection source and initiation of NPIs would have caused a 3 to 28-fold increase in total case number (31-77 day delay in containment). A failure to implement the quarantine scheme employed in the XFD outbreak for defined key population would have caused a fivefold greater number of cases (73 day delay in containment). Similarly, failure to implement the quarantine plan executed in the XFD outbreak for close contacts would have caused twofold greater transmission (44 day delay in containment). Finally, failure to implement expanded nucleic acid screening in the general population would have yielded 1.6-fold greater transmission and a 32 day delay to containment. CONCLUSIONS: This study informs new evidence that in form the selection of NPI to use as countermeasures in response to a COVID-19 outbreak and optimal timing of their implementation. The evidence provided by this study should inform responses to future outbreaks of COVID-19 and future infectious disease outbreak preparedness efforts in China and elsewhere.


Subject(s)
COVID-19/epidemiology , Beijing/epidemiology , COVID-19/transmission , COVID-19 Testing , China/epidemiology , Epidemiological Monitoring , Humans , Models, Statistical , Pandemics , Quarantine , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL